Evaluation of Phosphate Ion-Selective Membranes for Real-time Soil Nutrient Sensing

Thumbnail Image
Date
2005-07-01
Authors
Kim, Hak-Jin
Hummel, John
Birrell, Stuart
Sudduth, Kenneth
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Birrell, Stuart
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

A real-time soil nutrient sensor would allow the efficient collection of data with a fine spatial resolution, to accurately characterize within-field variability for site-specific nutrient application. Our goal was to evaluate the applicability of a phosphate membrane to the measurement of phosphate levels in soil extractants and to determine how previously developed nitrate and potassium membranes would be affected by the presence of phosphate. A type of PVC-based phosphate membrane containing an organotin compound, bis(p-chlorobenzyl)tin dichloride, was evaluated, along with the nitrate and potassium membranes, in pH 7 Tris buffer solution and Kelowna soil extractant for sensitivity and long-term stability. The phosphate membranes in the Tris buffer solution of pH 7 exhibited a response over a range of 10-5 to 10-1 mol/L phosphate concentrations with an average slope of -28.2 +1.5 mV per activity decade of dibasic phosphate. The response speed of tested electrodes containing phosphate, nitrate and potassium membranes was rapid, reaching an equilibrium response in less than 15 s. However, the phosphate membrane in the Kelowna solution of pH 8.5 was almost insensitive to different phosphate levels from 10-6 to 10-2 mol/L due to the presence of a high concentration of fluoride in the solution. In addition, the tin compound-based phosphate membranes had limited lifetimes of less than 14 days. It is not expected that the tested phosphate membranes could be used for phosphate detection in other soil extractants, such as Bray P1 and Mehlich III solutions, because they also contain high concentrations of fluoride.

Comments

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Description
Keywords
Citation
DOI
Copyright