Benchmarking AssemblyScript for Faster Web Applications

Thumbnail Image
Date
2020-01-01
Authors
Venkatram, Nischay
Major Professor
Dr. Joseph Zambreno
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Electrical and Computer Engineering
Abstract

As web applications are becoming increasingly complex, it is crucial now more than ever to be able to develop web apps with an emphasis on performance to ensure a responsive and smooth user experience. Since the introduction of Webassembly as a compilation target for the web, the promise of writing programs that can run at native speed seemed revolutionary in theory. But the real world performance benefits of Webassembly in comparison to Javascript is not clearly understood. This paper evaluates the current performance of Assemblyscript - a strict subset of TypeScript that compiles to Webassembly, and Javascript in the areas of numerical computing across multiple browsers. A set of benchmarks were developed in Assemblyscript that includes numerical computing problems from the Ostrich Benchmark suite. The tests were executed across Chrome and Firefox. After studying the results from the benchmarks that were created, we find that Assemblyscript demonstrates speedups that range between 1.1-7.2x. It is also noticed that writing idiomatic Typescript can slow down Assemblyscript in certain scenarios. In conclusion, this study suggests that Assemblyscript (and Webassembly) provides far more consistent and predictable performance in comparison to Javascript.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Wed Jan 01 00:00:00 UTC 2020