Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments

Date
2017-01-01
Authors
Moellers, Tara
Singh, Arti
Zhang, Jiaoping
Singh, Asheesh
Brungardt, Jae
Kabbage, Mehdi
Mueller, Daren
Grau, Craig
Ranjan, Ashish
Smith, Damon
Chowdy-Reddy, R. V.
Singh, Asheesh
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Agronomy
Organizational Unit
Journal Issue
Series
Department
Plant Pathology and MicrobiologyAgronomy
Abstract

Genome-wide association (GWAS) and epistatic (GWES) studies along with expression studies in soybean [Glycine max (L.) Merr.] were leveraged to dissect the genetics of Sclerotinia stem rot (SSR) [caused by Sclerotinia sclerotiorum (Lib.) de Bary], a significant fungal disease causing yield and quality losses. A large association panel of 466 diverse plant introduction accessions were phenotyped in multiple field and controlled environments to: (1) discover sources of resistance, (2) identify SNPs associated with resistance, and (3) determine putative candidate genes to elucidate the mode of resistance. We report 58 significant main effect loci and 24 significant epistatic interactions associated with SSR resistance, with candidate genes involved in a wide range of processes including cell wall structure, hormone signaling, and sugar allocation related to plant immunity, revealing the complex nature of SSR resistance. Putative candidate genes [for example, PHYTOALEXIN DEFFICIENT 4 (PAD4), ETHYLENE-INSENSITIVE 3-LIKE 1 (EIL3), and ETHYLENE RESPONSE FACTOR 1 (ERF1)] clustered into salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways suggest the involvement of a complex hormonal network typically activated by both necrotrophic (ET/JA) and biotrophic (SA) pathogens supporting that S. sclerotiorum is a hemibiotrophic plant pathogen.

Comments

This article is published as Moellers, Tara C., Arti Singh, Jiaoping Zhang, Jae Brungardt, Mehdi Kabbage, Daren S. Mueller, Craig R. Grau et al. "Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments." Scientific Reports 7, no. 1 (2017): 3554. doi: 10.1038/s41598-017-03695-9. Posted with permission.

Description
Keywords
Citation
DOI
Collections