Monitoring software using property-aware program sampling

dc.contributor.advisor Hridesh Rajan
dc.contributor.author Narayanappa, Harish
dc.contributor.department Computer Science
dc.date 2018-08-11T06:57:50.000
dc.date.accessioned 2020-06-30T02:35:29Z
dc.date.available 2020-06-30T02:35:29Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 2010
dc.date.embargo 2013-06-05
dc.date.issued 2010-01-01
dc.description.abstract <p>Monitoring or profiling programs provides us with an</p> <p>understanding for its further improvement and analysis.</p> <p>Typically, for monitoring or profiling, the program is instrumented</p> <p>to execute additional code that collects necessary data.</p> <p>A problem is that program instrumentation is often reported to</p> <p>cause between 10% and 390% time and space overhead.</p> <p>A number of techniques based on statistical sampling</p> <p>have been proposed to reduce the instrumentation overhead.</p> <p>Statistical sampling based instrumentation techniques,</p> <p>although effective in reducing the overall overhead,</p> <p>often lead to poor coverage or less accurate results.</p> <p>In this work, we present a profiling technique based</p> <p>on property-aware program sampling.</p> <p>The key ideas are (i) to use program slicing to narrow</p> <p>down the scope of instrumentation to the sections</p> <p>of program relevant to the property of interest,</p> <p>(ii) to decompose large program slices into logically</p> <p>related slice fragments, and (iii) to apply statistical</p> <p>sampling on the set of slice fragments.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/etd/11410/
dc.identifier.articleid 2392
dc.identifier.contextkey 2807590
dc.identifier.doi https://doi.org/10.31274/etd-180810-872
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath etd/11410
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/25616
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/etd/11410/Narayanappa_iastate_0097M_11127.pdf|||Fri Jan 14 18:49:49 UTC 2022
dc.subject.disciplines Computer Sciences
dc.subject.keywords instrumentation
dc.subject.keywords program slicing
dc.subject.keywords property-aware monitoring
dc.subject.keywords sampling
dc.subject.keywords slice fragments
dc.subject.keywords static analysis
dc.title Monitoring software using property-aware program sampling
dc.type article
dc.type.genre thesis
dspace.entity.type Publication
relation.isOrgUnitOfPublication f7be4eb9-d1d0-4081-859b-b15cee251456
thesis.degree.level thesis
thesis.degree.name Master of Science
File
Original bundle
Now showing 1 - 1 of 1
Name:
Narayanappa_iastate_0097M_11127.pdf
Size:
506.21 KB
Format:
Adobe Portable Document Format
Description: