Carbon fiber-based electrically conductive concrete for salt-free deicing of pavements

Thumbnail Image
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Arabzadeh, Ali
Postdoc Research Associate
Ceylan, Halil
Professor Professor
Gopalakrishnan, Kasthurirangan
Research Associate Professor
Taylor, Peter
Research Professor
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Institute for Transportation
InTrans administers 14 centers and programs, and several other distinct research specialties, and a variety of technology transfer and professional education initiatives. More than 100 Iowa State University faculty and staff work at InTrans, and from 200 to 250 student assistants from several ISU departments conduct research while working closely with university faculty. InTrans began in 1983 as a technical assistance program for Iowa’s rural transportation agencies.
Journal Issue
Is Version Of

Traditional methods of removing snow/ice from pavements involve application of deicing salts and mechanical removal that carry environmental concerns. In this study, the feasibility of applying carbon fiber-based electrically conductive concrete (ECON) in heated pavement systems (HPS) as an alternative to traditional methods was investigated. Optimum carbon fiber dosage to achieve desirable electrical conductivity and avoid excessive fiber use was determined by studying carbon fiber percolation in different cementitious composites. System design was evaluated by finite element (FE) analysis. Heating performance in terms of energy consumption regime was studied by quasi-long-term (460-day) experimental study using a prototype ECON slab.

Percolation transition zone of carbon fiber in paste, mortar, and concrete were respectively 0.25–1% (Vol.), 0.6–1% (Vol.), and 0.5–0.75% (Vol.). Optimum fiber dosage in ECON with respect to conductivity was 0.75%, resulting in volume conductivity of 1.86 × 10−2 (S/cm) at 28 days and 1.22 × 10−2(S/cm) at 460 days of age. Electrical-energy-to-heat-energy conversion efficiency decreased from 66% at 28 days to 50% at 460-day age. The results showed that the studied technology could be effectively applied for ice/snow melting on pavement surfaces and provide a feasible alternative to traditional methods if the ECON mixing proportions and system configurations are made with necessary precautions.


This is a manuscript of an article published as Sassani, Alireza, Ali Arabzadeh, Halil Ceylan, Sunghwan Kim, SM Sajed Sadati, Kasthurirangan Gopalakrishnan, Peter C. Taylor, and Hesham Abdualla. "Carbon fiber-based electrically conductive concrete for salt-free deicing of pavements." Journal of Cleaner Production 203 (2018): 799-809. DOI: 10.1016/j.jclepro.2018.08.315. Posted with permission.

Mon Jan 01 00:00:00 UTC 2018