Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content

Thumbnail Image
Date
2019-01-01
Authors
Tong, Bing
Kool, Dilia
Heitman, Joshua
Sauer, Thomas
Gao, Zhiqiu
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Soil thermal properties play important roles in dynamic heat and mass transfer processes, and they vary with soil water content (θ) and bulk density (ρ b). Both θ and ρ bchange with time, particularly in recently tilled soil. However, few studies have addressed the full extent of soil thermal property changes with θ and ρ b. The objective of this study is to examine how changes in ρ b with time after tillage impact soil thermal properties (volumetric heat capacity, C v, thermal diffusivity, k, and thermal conductivity, λ). The study provides thermal property values as functions of θ and ρ b and of air content (n air) on undisturbed soil cores obtained at selected times following tillage. Heat pulse probe measurements of thermal properties were obtained on each soil core at saturated, partially saturated (θ at pressure head of −50 kPa) and oven‐dry conditions. Generally, kand λ increased with increasing ρ b at the three water conditions. The C v increased as ρ bincreased in the oven‐dry and unsaturated conditions and decreased as ρ b increased in the saturated condition. For a given θ, a larger ρ b was associated with larger thermal property values, especially for λ. The figures of C v, k and λ versus θ and ρ b, as well as C v, k and λ versus n air, represented the range of soil conditions following tillage. Trends in the relationships of thermal property values with θ and ρ b were described by 3‐D surfaces, whereas each thermal property had a linear relationship with n air. Clearly, recently tilled soil thermal property values were quite dynamic temporally due to varying θ and ρ b. The dynamic soil thermal property values should be considered in soil heat and mass transfer models either as 3‐D functions of θ and ρ b or as linear functions of n air.

Comments

This article is published as Tong, B., D. Kool, J. L. Heitman, T. J. Sauer, Z. Gao, and R. Horton. "Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content." European Journal of Soil Science (2019). doi: 10.1111/ejss.12856.

Description
Keywords
Citation
DOI
Copyright
Collections