Enhancements of CINET fuzzy classifier

dc.contributor.author Yu, Zhen
dc.contributor.department Electrical and Computer Engineering
dc.date 2020-08-05T05:05:22.000
dc.date.accessioned 2021-02-26T08:45:51Z
dc.date.available 2021-02-26T08:45:51Z
dc.date.copyright Wed Jan 01 00:00:00 UTC 2003
dc.date.issued 2003-01-01
dc.description.abstract <p>Neuro-fuzzy systems combine the theory of two popular computational intelligence techniques: neural networks and fuzzy logic systems. In this thesis, we study Continuous Inference Network (CINET), a neuro-fuzzy classifier, developed at Applied Research Lab, Pennsylvania State University. Our work is to make some enhancements of CINET classifier. We prove that the problem of learning the range of input membership function of CINET classifier is a Linear Mixed Integer Programming (LMIP) problem. Moreover, the necessity and sufficiency functions for fuzzy inference are simplified to satisfy some algebraic properties and facilitate using back-propagation algorithm to adjust system parameters. To deal with the randomness in input measurements we also define the ambiguity degree and give out its calculation method.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/rtd/20101/
dc.identifier.articleid 21100
dc.identifier.contextkey 18791911
dc.identifier.doi https://doi.org/10.31274/rtd-20200803-424
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath rtd/20101
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/97468
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/rtd/20101/Yu_ISU_2003_Y82.pdf|||Fri Jan 14 22:19:57 UTC 2022
dc.subject.keywords Electrical and computer engineering
dc.subject.keywords Electrical engineering
dc.title Enhancements of CINET fuzzy classifier
dc.type article
dc.type.genre thesis
dspace.entity.type Publication
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
thesis.degree.discipline Electrical Engineering
thesis.degree.level thesis
thesis.degree.name Master of Science
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Yu_ISU_2003_Y82.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description: