Feedback stabilization of bilinear control systems
Feedback stabilization of bilinear control systems
dc.contributor.advisor | Wolfgang Kliemann | |
dc.contributor.author | Wang, Hualin | |
dc.contributor.department | Mathematics | |
dc.date | 2018-08-23T15:58:43.000 | |
dc.date.accessioned | 2020-06-30T07:16:03Z | |
dc.date.available | 2020-06-30T07:16:03Z | |
dc.date.copyright | Thu Jan 01 00:00:00 UTC 1998 | |
dc.date.issued | 1998 | |
dc.description.abstract | <p>In this dissertation we study the region in which a bilinear control system is feedback stabilizable. In particular, we prove the equivalence of exponential stability and asymptotic stability using measurable feedback laws. Also we find a necessary and sufficient condition for feedback stabilization in terms of the Lyapunov spectrum. The maximal stabilizable region is discussed and some open questions are presented.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/rtd/11820/ | |
dc.identifier.articleid | 12819 | |
dc.identifier.contextkey | 6510307 | |
dc.identifier.doi | https://doi.org/10.31274/rtd-180813-10745 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | rtd/11820 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/65120 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/rtd/11820/r_9826581.pdf|||Fri Jan 14 18:59:16 UTC 2022 | |
dc.subject.disciplines | Mathematics | |
dc.subject.keywords | Mathematics | |
dc.subject.keywords | Applied mathematics | |
dc.title | Feedback stabilization of bilinear control systems | |
dc.type | article | |
dc.type.genre | dissertation | |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 | |
thesis.degree.level | dissertation | |
thesis.degree.name | Doctor of Philosophy |
File
Original bundle
1 - 1 of 1