Increasing carbon footprint of grain crop production in the US Western Corn Belt

Thumbnail Image
Date
2018-11-27
Authors
Yu, Zhen
Tian, Hanqin
Hennessy, David
Al-Kaisi, Mahdi
Zhou, Yuyu
Sauer, Tom
Arritt, Raymond
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lu, Chaoqun
Assistant Professor
Person
Feng, Hongli
Assistant Professor
Research Projects
Organizational Units
Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Global agriculture is challenged to increase soil carbon sequestration and reduce greenhouse gas emissions while providing products for an increasing population. Growing crop production could be achieved through higher yield per hectare (i.e. intensive farming) or more hectares (extensive farming), which however, have different ecological and environmental consequences. Multiple lines of evidence indicate that expanding cropland for additional production may lead to loss of vegetation and soil carbon, and threaten the survival of wildlife. New concerns about the impacts of extensive farming have been raised for the US Corn Belt, one of the world's most productive regions, as cropland has rapidly expanded northwestward unto grasslands and wetlands in recent years. Here we used a process-based ecosystem model to distinguish and quantify how natural drivers as well as intensive and extensive farming practices have altered grain production, soil carbon storage, and agricultural carbon footprint in the US Western Corn Belt since 1980. Compared to the period 1980–2005, we found that cropland expansion more than tripled in the most recent decade (2006–2016), becoming a significant factor contributing to growing grain production. Land use change in this period led to a soil carbon loss of 90.8 ± 14.7 Tg (1 Tg = 1012 g). As a result, grain production in this region shifted from carbon neutral to a carbon loss of 2.3 kg C kg−1 grain produced. The enlarging negative carbon footprint (ΔC/ΔP) indicates the major role that cropland expansion has had on the carbon cost of grain production in this region. Therefore, we should be more cautious to pursue high crop production through agricultural cropland conversion, particularly in those carbon-rich soils.

Comments

This article is published as Chaoqun Lu et al. Increasing carbon footprint of grain crop production in the US Western Corn Belt. 2018 Environ. Res. Lett. 13(124007). Doi:10.1088/1748-9326/aae9fe.

Description
Keywords
Citation
DOI
Copyright
Collections