Cathodic Corrosion of Metal Electrodes—How to Prevent It in Electroorganic Synthesis

Thumbnail Image
Wirtanen, Tom
Prenzel, Tobias
Waldvogel, Siegfried
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
NSF Engineering Research Center for Biorenewable Chemicals
Founded in 2008 with more than $44M in federal, industry, and Iowa State University funding, CBiRC works in tandem with Iowa and the nation’s growing biosciences sector. CBiRC’s goal is to lead the transformation of the chemical industry toward a future where chemicals derived from biomass resources will lead to the production of new bioproducts to meet evolving societal needs.
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of

The critical aspects of the corrosion of metal electrodes in cathodic reductions are covered. We discuss the involved mechanisms including alloying with alkali metals, cathodic etching in aqueous and aprotic media, and formation of metal hydrides and organometallics. Successful approaches that have been implemented to suppress cathodic corrosion are reviewed. We present several examples from electroorganic synthesis where the clever use of alloys instead of soft neat heavy metals and the application of protective cationic additives have allowed to successfully exploit these materials as cathodes. Because of the high overpotential for the hydrogen evolution reaction, such cathodes can contribute toward more sustainable green synthetic processes. The reported strategies expand the applications of organic electrosynthesis because a more negative regime is accessible within protic media and common metal poisons, e.g., sulfur-containing substrates, are compatible with these cathodes. The strongly diminished hydrogen evolution side reaction paves the way for more efficient reductive electroorganic conversions.


This document is published as Wirtanen, Tom, Tobias Prenzel, Jean-Philippe Tessonnier, and Siegfried R. Waldvogel. "Cathodic Corrosion of Metal Electrodes—How to Prevent It in Electroorganic Synthesis." Chemical Reviews (2021). DOI: 10.1021/acs.chemrev.1c00148. Posted with permission.

Fri Jan 01 00:00:00 UTC 2021