Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy

Thumbnail Image
Date
2022-12
Authors
Kustas, Andrew B.
Jones, Morgan R.
DelRio, Frank W.
Lu, Ping
Pegues, Jonathan
Singh, Prashant
Smirnov, A. V.
Tiarks, Jordan
Hintsala, Eric D.
Stauffer, Douglas D.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Iowa State University Digital Repository, Ames IA (United States)
Authors
Person
Johnson, Duane
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Abstract
Materials are needed that can tolerate increasingly harsh environments, especially ones that retain high strength at extreme temperatures. Higher melting temperature alloys, like those consisting primarily of refractory elements, can greatly increase the efficiency of turbomachinery used in grid electricity production worldwide. Existing alloys, including Ni- and Co-based superalloys, used in components like turbine blades, bearings, and seals, remain a performance limiting factor due to their propensity, despite extensive optimization efforts, for softening and diffusion-driven elongation at temperatures often well above half their melting point. To address this critical materials challenge, we present results from integrating additive manufacturing and alloy design to guide significant improvements in performance via traditionally difficult-to-manufacture refractory alloys. We present an example of a multi-principal element alloy (MPEA), consisting of five refractory elements and aluminum, that exhibited high hardness and specific strength surpassing other known alloys, including superalloys. The alloy shows negligible softening up to 800°C and consists of four compositionally distinct phases, in distinction to previous work on MPEAs. Density functional theory calculations reveal a thermodynamic explanation for the observed temperature-independent hardness and favorability for the formation of this multiplicity of phases.
Comments
This article is published as Kustas, Andrew B., Morgan R. Jones, Frank W. DelRio, Ping Lu, Jonathan Pegues, Prashant Singh, A. V. Smirnov et al. "Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy." Applied Materials Today 29 (2022): 101669. DOI: 10.1016/j.apmt.2022.101669. Copyright 2022 The Authors. Attribution 4.0 International (CC BY 4.0). Posted with permission. DOE Contract Number(s): AC02-07CH11358; NA0003525
Description
Keywords
Citation
DOI
Copyright
Collections