Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean

Thumbnail Image
Date
2022-10-21
Authors
Rairdin, Ashlyn
Fotouhi, Fateme
Zhang, Jiaoping
Mueller, Daren S.
Dutta, Somak
Sarkar, Soumik
Singh, Arti
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
© 2022 Rairdin, Fotouhi, Zhang, Mueller, Ganapathysubramanian, Singh, Dutta, Sarkar and Singh
Authors
Person
Person
Singh, Asheesh
Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Organizational Unit
Statistics

The Department of Statistics seeks to teach students in the theory and methodology of statistics and statistical analysis, preparing its students for entry-level work in business, industry, commerce, government, or academia.

History
The Department of Statistics was formed in 1948, emerging from the functions performed at the Statistics Laboratory. Originally included in the College of Sciences and Humanities, in 1971 it became co-directed with the College of Agriculture.

Dates of Existence
1948-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract
Using a reliable and accurate method to phenotype disease incidence and severity is essential to unravel the complex genetic architecture of disease resistance in plants, and to develop disease resistant cultivars. Genome-wide association studies (GWAS) involve phenotyping large numbers of accessions, and have been used for a myriad of traits. In field studies, genetic accessions are phenotyped across multiple environments and replications, which takes a significant amount of labor and resources. Deep Learning (DL) techniques can be effective for analyzing image-based tasks; thus DL methods are becoming more routine for phenotyping traits to save time and effort. This research aims to conduct GWAS on sudden death syndrome (SDS) of soybean [Glycine max L. (Merr.)] using disease severity from both visual field ratings and DL-based (using images) severity ratings collected from 473 accessions. Images were processed through a DL framework that identified soybean leaflets with SDS symptoms, and then quantified the disease severity on those leaflets into a few classes with mean Average Precision of 0.34 on unseen test data. Both visual field ratings and image-based ratings identified significant single nucleotide polymorphism (SNP) markers associated with disease resistance. These significant SNP markers are either in the proximity of previously reported candidate genes for SDS or near potentially novel candidate genes. Four previously reported SDS QTL were identified that contained a significant SNPs, from this study, from both a visual field rating and an image-based rating. The results of this study provide an exciting avenue of using DL to capture complex phenotypic traits from images to get comparable or more insightful results compared to subjective visual field phenotyping of traits for disease symptoms.
Comments
This article is published as Rairdin A, Fotouhi F, Zhang J, Mueller DS, Ganapathysubramanian B, Singh AK, Dutta S, Sarkar S and Singh A (2022) Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean. Front. Plant Sci. 13:966244. doi: 10.3389/fpls.2022.966244. Posted with permission.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Description
Keywords
Citation
DOI
Copyright
Collections