Comparison of Reproductive and Flight Capacity of Loxostege sticticalis (Lepidoptera: Pyralidae), Developing From Diapause and Non-Diapause Larvae

Thumbnail Image
Date
2012-10-01
Authors
Xie, Daosong
Luo, Lizhi
Jiang, Xingfu
Zhang, Lei
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sappington, Thomas
Collaborating Professor
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

The beet webworm, Loxostege sticticalis (L.) (Lepidoptera: Pyralidae), uses both diapause and migration as life history strategies. To determine the role of diapause plays in the population dynamics of L. sticticalis, the reproductive and flight potentials of adults originating from diapause and nondiapause larvae were investigated under controlled laboratory conditions. Preoviposition period, lifetime fecundity, and daily egg production of females originating from diapause larvae were not significantly different from those originating from nondiapause larvae, showing that diapause has no significant effect on reproductive capacity when adults are provided with an adequate carbohydrate source. However, females that developed from diapause larvae lived significantly longer than those from nondiapause larvae. Flight capacity, including flight duration, distance and velocity of 3-d-old adults were all significantly greater in adults originating from diapause larvae than those from nondiapause larvae. L. sticticalisadults developing from diapause larvae tended to have more extreme values of longest flight duration and furthest flight distance than those from nondiapause larvae. Together, these results suggest that long-distance flight potential of L. sticticalis is greater after larval diapause than after direct development to adulthood. However, there were no significant differences between sexes within the two categories of moths in terms of total flight duration, total flight distance, flight velocity, and longest flight duration.

Comments

This article is from Environmental Entomology 41 (2012): 1199, doi:10.1603/EN11068.

Description
Keywords
Citation
DOI
Copyright
Collections