Impact of nematicity on the relationship between antiferromagnetic fluctuations and superconductivity in FeSe0.91S0.09 under pressure

Thumbnail Image
Rana, Khusboo
Xiang, Li
Wiecki, Paul
Ribeiro, Raquel
Lesseux, Guilherme
Böhmer, Anna
Bud’ko, Sergey
Furukawa, Yuji
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Ames Laboratory

The sulfur-substituted FeSe system, FeSe1−xSx, provides a versatile platform for studying the relationship among nematicity, antiferromagnetism, and superconductivity. Here, by nuclear magnetic resonance (NMR) and resistivity measurements up to 4.73 GPa on FeSe0.91S0.09, we established the pressure- (p-) temperature (T) phase diagram in which the nematic state is suppressed with pressure showing a nematic quantum phase transition (QPT) around p=0.5GPa, two superconductivity (SC) regions separated by the QPT appear, and antiferromagnetic (AFM) phase emerges above ∼3.3GPa. From the NMR results up to 2.1 GPa, AFM fluctuations are revealed to be characterized by the stripe-type wave vector which remains the same for the two SC regions. Furthermore, the electronic state is found to change in character from non-Fermi liquid to Fermi liquid around the nematic QPT and persists up to ∼2.1GPa. In addition, although the AFM fluctuations correlate with Tc in both SC states, demonstrating the importance of the AFM fluctuations for the appearance of SC in the system, we found that, when nematic order is absent, Tc is strongly correlated with the AFM fluctuations whereas Tc weakly depends on the AFM fluctuations when nematic order is present. Our findings on FeSe0.91S0.09 were shown to be applied to the whole FeSe1−xSx system and provide an insight into the relationship between AFM fluctuations and SC in Fe-based superconductors.

Subject Categories