NKD Transcription Factors Are Central Regulators of Maize Endosperm Development

Thumbnail Image
Gontarek, Bryan
Neelakandan, Anjanasree
Wu, Hao
Becraft, Philip
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Journal Issue
Is Version Of

NAKED ENDOSPERM1 (NKD1) and NKD2 are duplicate INDETERMINATE DOMAIN (IDD) transcription factors important for maize (Zea mays) endosperm development. RNA-seq analysis of the nkd1 nkd2 mutant endosperm revealed that NKD1 and NKD2 influence 6.4% of the transcriptome in developing aleurone and 6.7% in starchy endosperm. Processes regulated by NKD1 and NKD2 include gene expression, epigenetic functions, cell growth and division, hormone pathways, and resource reserve deposition. The NKD1 and NKD2 proteins bind a consensus DNA sequence of TTGTCGT with slightly different properties. This motif was enriched in the promoters of gene transcripts differentially expressed (DE) in mutant endosperm. DE genes with a NKD binding motif in the 5′ promoter region were considered as likely direct targets of NKD1 and NKD2 regulation, and these putative direct target genes were notably enriched for storage proteins. Transcription assays demonstrate that NKD1 and NKD2 can directly regulate gene transcription, including activation of opaque2 and viviparous1 promoters. NKD2 functions as a negative regulator of nkd1 transcription, consistent with previously reported feedback regulation. NKD1 and NKD2 can homo- and heterodimerize through their ID domains. These analyses implicate NKD1 and NKD2 as central regulators of gene expression in developing maize endosperm.


This article is from The Plant Cell 28 (2016): 2916–2936, doi:10.1105/tpc.16.00609. Posted with permission.

Fri Jan 01 00:00:00 UTC 2016