Magnetostrictive and elastic properties of Fe100−xMox (2

Thumbnail Image
Date
2010-04-21
Authors
Huang, Mianliang
Mandru, A.
Petculescu, G.
Clark, A.
Wun-Fogle, M.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lograsso, Thomas
Ames Laboratory Division Director
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Journal Issue
Is Version Of
Versions
Series
Abstract

In this paper we investigate the magnetostrictive [(3/2)λ100 and (3/2)λ111] and elastic (c′and c44) behavior of single crystalline alloys Fe100−xMox for 21 and −b2) are computed from the measurements. Similar to other Fe–X (X = Al, Ga, and Ge) alloys, the tetragonal magnetostriction (3/2)λ100 increases monotonically from ∼ 70×10−6 at ∼ 2.5 at. % Mo to a maximum of either ∼ 100×10−6 at ∼ 8 at. % Mo for the slow cooled crystals or ∼ 125×10−6 at ∼ 11 at. % Mo for quenched crystals. A sharp decrease after the peak is observed for the slow cooled crystals due to the formation of a second phase. The rhombohedral magnetostriction (3/2)λ111 of the Fe–Mo alloys is found to be insensitive to the Mo content. This behavior is distinctly different from other Fe–X (X = Al, Ga, and Ge) alloys where a slight decrease in magnitude and a sign reversal upon chemical ordering was observed for (3/2)λ111. Both shear elastic constants (c′ and c44) for Fe–Mo are remarkably insensitive to the Mo content, which is also distinct from the other Fe-based alloys used in the comparison. The two magnetoelastic coupling constants −b1 = 3λ100c′ (with values from 7.15 to 9.77 MJ/m3) and −b2 = 3λ111c44 (with values from −4.96 to −5.81 MJ/m3) were calculated and compared with those of other Fe–X (X = Al, Ga, and Ge) alloys.

Comments

Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

The following article appeared in Journal of Applied Physics 107 (2010): 09A920 and may be found at http://dx.doi.org/10.1063/1.3359855.

Description
Keywords
Citation
DOI
Source
Copyright
Fri Jan 01 00:00:00 UTC 2010