Development of a subcutaneous ear implant to deliver an anaplasmosis vaccine to dairy steers

Thumbnail Image
Curtis, Andrew
Reif, Kathryn
Kleinhenz, Michael
Martin, Miriam
Skinner, Brandt
Kelly, Sean
Jones, Douglas
Reppert, Emily
Montgomery, Shawnee
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Narasimhan, Balaji
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of

Bovine anaplasmosis is the most prevalent tick-transmitted disease of cattle worldwide and a major obstacle to profitable beef production. Use of chlortetracycline-medicated feed to control active anaplasmosis infections during the vector season has raised concerns about the potential emergence of antimicrobial resistance in bacteria that may pose a risk to human health. Furthermore, the absence of effectiveness data for a commercially available, conditionally licensed anaplasmosis vaccine is a major impediment to implementing anaplasmosis control programs. The primary objective of this study was to develop a single-dose vaccine delivery platform to produce long-lasting protective immunity against anaplasmosis infections. Twelve Holstein steers, aged 11-12 weeks, were administered a novel 3-stage, single-dose vaccine against Anaplasma marginale (Am) major surface protein 1a. The vaccine consisted of a soluble vaccine administered subcutaneously (s.c.) for immune priming, a vaccine depot of a biodegradable polyanhydride rod with intermediate slow release of the vaccine for boosting immune response, and an immune-isolated vaccine platform for extended antigen release (VPEAR implant) deposited s.c. in the ear. Six calves were randomly assigned to two vaccine constructs (n=3) that featured rods and implants containing a combination of two different adjuvants, diethylaminoethyl (DEAE)-Dextran and Quil-A (Group A). The remaining 6 calves were randomly assigned to two vaccine constructs (n=3) that featured rods and implants containing the same adjuvant (either DEAE-Dextran or Quil A) (Group B). Twenty one months post-implantation, calves were challenged intravenously with Am stabilate and were monitored weekly for signs of fever, decreased packed cell volume (PCV) and bacteremia. Data were analyzed using a mixed effects model and chi-squared tests (SAS v9.04.01, SAS Institute, Cary, NC). Calves in Group A had higher PCV than calves in Group B (P = 0.006) at day 35 post-infection. Calves in Group A were less likely to require antibiotic intervention compared with calves in Group B (P = 0.014). Results indicate that calves exhibited diminished clinical signs of anaplasmosis when antigen was delivered with a combination of adjuvants as opposed to a single adjuvant. This demonstrates the feasibility of providing long lasting protection against clinical bovine anaplasmosis infections using a subcutaneous ear implant vaccine construct.


This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of Animal Science. The version of record: Curtis, Andrew K., Kathryn E. Reif, Michael D. Kleinhenz, Miriam S. Martin, Brandt Skinner, Sean M. Kelly, Douglas E. Jones, Emily J. Reppert, Shawnee R. Montgomery, Balaji Narasimhan, Tippawan Anantatat, Majid Jaberi-Douraki, and Johann F. Coetzee. "Development of a subcutaneous ear implant to deliver an anaplasmosis vaccine to dairy steers." Journal of Animal Science (2019) is available online at DOI: 10.1093/jas/skz392. Posted with permission.

Tue Jan 01 00:00:00 UTC 2019