Visualizing Biological Data in Google Earth

Thumbnail Image
Date
2011-01-01
Authors
Jia, Ming
Major Professor
Advisor
Julie A. Dickerson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Meaningful visualization of large scale biological data is the key for achieving new discoveries in system biology research. Typical types of biological data in research includes: biological pathways or networks, biological ontologies, and experimental data. Visualization tools used in these areas often fail to present a meaningful and insightful view of underlining data.

We present a new interactive visualization tool, MetNetGE, which features novel visualization techniques for three kinds of biological data: pathway, ontology and omics data. For a given biological pathway, we proposed a novel 3D layout algorithm, aligned 3D tiered layout, which arrange the pathway nodes into different tiers to make the cross-layer connection patterns stand out.

Biologists interested in a species may want to see all hundreds of metabolic pathways for that species. Instead of simply showing hundreds of pathways in one network in a complex and incomprehensible graph, MetNetGE organizes those pathways based on the hierarchical pathway ontology, and visualizes the structure using the proposed 3D Enhanced Radial Space-Filling (ERSF) technique. The ERSF algorithm uses an orbit metaphor to present the non-tree edges in the ontology. Mapping cumulative omics statistics on the ERSF drawing aids biologists in easily identifying highly activated pathways or categories in an experiment.

MetNetGE uses Google Earth (GE) as the underlining visualization tool. All the biological entities are converted to objects in the KML (Keyhole Markup Language) file and loaded in GE.

A user study with 20 participants to demonstrate the improved efficiency of MetNetGE over Cytoscape regards certain biological tasks. Although MetNetGE requires higher learning time (680 seconds vs. 350 seconds) on average, it helps participants quickly finish the tasks. Results showed that the completion time of using MetNetGE is about half of using Cytoscape.

Comments
Description
Keywords
Citation
Source
Copyright
Sat Jan 01 00:00:00 UTC 2011