Arabidopsis Small RNAs and Their Targets During Cyst Nematode Parasitism

Thumbnail Image
Hewei, Tarek
Howe, Peter
Maier, Tom
Baum, Thomas
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Plant Pathology and Microbiology

Plant-parasitic cyst nematodes induce the formation of specialized feeding cells in infected roots, which involves plant developmental processes that have been shown to be influenced by microRNAs (miRNAs) and other small RNAs. This observation provided the foundation to investigate the potential involvement of small RNAs in plant–cyst nematode interactions. First, we examined the susceptibilities of Arabidopsis DICER-like (dcl) and RNA-dependent RNA polymerase (rdr) mutants to the sugar beet cyst nematode Heterodera schachtii. The examined mutants exhibited a trend of decreased susceptibility, suggesting a role of small RNAs mediating gene regulation processes during the plant–nematode interaction. Second, we generated two small RNA libraries from aseptic Arabidopsis roots harvested at 4 and 7 days after infection with surface-sterilized H. schachtii. Sequences of known miRNAs as well as novel small interfering (si)RNAs were identified. Following this discovery, we used real-time reverse-transcriptase polymerase chain reaction to quantify a total of 15 Arabidopsis transcripts that are known targets of six of the different miRNA families found in our study (miR160, miR164, miR167, miR171, miR396, and miR398) in inoculated and noninoculated Arabidopsis roots. Our analyses showed mostly negative correlations between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during parasitism. Also, we identified a total of 125 non-miRNA siRNAs. Some of these siRNAs perfectly complement protein-coding mRNAs or match transposon or retrotransposon sequences in sense or antisense orientations. We further quantified a group of siRNAs in H. schachtii-inoculated roots. The examined siRNAs exhibited distinct expression patterns in infected and noninfected roots, providing additional evidence for the implication of small RNAs in cyst nematode parasitism. These data lay the foundation for detailed analyses of the functions of small RNAs during phytonematode parasitism.


This article is published as Hewezi, Tarek, Peter Howe, Tom R. Maier, and Thomas J. Baum. "Arabidopsis small RNAs and their targets during cyst nematode parasitism." Molecular Plant-Microbe Interactions 21, no. 12 (2008): 1622-1634, doi: 10.1094/MPMI-21-12-1622. Posted with permission.

Tue Jan 01 00:00:00 UTC 2008