UV-TiO2 Treatment of Odorants and Odors Associated with Poultry Manure

Thumbnail Image
Date
2010-10-01
Authors
Laor, Yael
Ravid, Uzi
Armon, Robert
Saadi, Ibrahim
Ozer, Yael
Yang, Xiuyan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Advanced oxidation technologies such as various combinations of UV/TiO(2)/O(3) have the potential to decompose multiple odorous volatile organic compounds (VOCs). Only limited work has been devoted to investigate the potential of these methods to treat real odors emitted from various agricultural and industrial sources. The present study explores the effectiveness of UV/TiO(2) photocatalysis to treat the odors associated with poultry manure. A dynamic (flow-through) setup was built in which the odor source was obtained by purging fresh or aged suspension of poultry manure. The photoreactor was constructed out of a 2.5-liters quartz tube which was surrounded by a ring of 24 individually controlled 18W "black light" lamps (365 nm). A TiO(2)-coated support was placed inside the reactor. The effectiveness of the various treatments was assessed by analyzing specific odorants (using headspace solid phase microextraction followed by GC-MS) and collecting the total air in Tedlar bags for odor analysis by dynamic olfactometry. Ammonia was measured with Kitagawa color tubes. Samples were withdrawn through ports before and after the photoreactor, and the effectiveness of treatments was assessed as percent removal for each target compound based on peak area counts obtained for separate VOCs or concentrations of ammonia obtained by the color tubes. Experiments were designed to examine the effect of flow rates (i.e. residence time), number of lamps in use (i.e. energy dose), and the role of TiO(2). Removals of key manure-associated odorants, such as dimethyl disulfide, dimethyl trisulfide and p-cresol, were between 80 to similar to 100% (decreased to below detection limit). The total odor was reduced by 75% in one experiment with fresh manure suspension (starting from about 70,000 odour units, OU) and was not reduced much in another experiment with aged manure suspension (starting from about 700 OU) The latter was presumably due to the contribution of odor from trace levels of ozone which was generated under the photocatalytic conditions. Ammonia was reduced between 0-50% in the various treatments. The reported removals were obtained for residence times ranging from only a few and up to a maximum of about 10 seconds. After optimization, this approach may become applicable for the treatment of outflow air at mechanically-ventilated barns.

Comments

This article is published as Laor, Y., U. Ravid, R. Armon, I. Saadi, Y. Ozer, J.A. Koziel, and X. Yang. "UV-TiO2 treatment of odorants and odors associated with poultry manure." Chemical Engineering Transactions, 23, no. 10 (2010): 321-326. DOI: 10.3303/CET1023054. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections