Stacked crop rotations and cultural practices for canola and flax yield and quality

Thumbnail Image
Supplemental Files
Date
2020-01-01
Authors
Sainju, Upendra
Allen, Brett
Jabro, Jalal
Stevens, William
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lenssen, Andrew
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Canola (Brassica napus L.) and flax (Linum usitatissimum L.) are important oilseed crops, but improved management practices to enhance their yields and quality are needed. We studied the effect of stacked versus alternate‐year crop rotations and traditional versus improved cultural practices on canola and flax growth, seed yield, oil concentration, and N‐use efficiency from 2006 to 2011 in the northern Great Plains, USA. Stacked rotations were durum (Triticum turgidum L.)‐durum‐canola‐pea (Pisum sativum L.) (DDCP) and durum‐durum‐flax‐pea (DDFP). Alternate‐year rotations were durum‐canola‐durum‐pea (DCDP) and durum‐flax‐durum‐pea (DFDP). The traditional cultural practice included a combination of conventional tillage, recommended seed rate, broadcast N fertilization, and reduced stubble height. The improved cultural practice included a combination of no‐tillage, increased seed rate, banded N fertilization, and increased stubble height. Canola stand count was 36–123% greater with the improved than the traditional cultural practice in 2006, 2009, 2010, and 2011. Canola pod number and oil concentration were 3–36% greater in the improved than the traditional practice in 2007 and 2010, but trends reversed by 5–19% in 2008. Flax stand count was 28% greater with DFDP than DDFP in 2007 and 56% greater in the improved than the traditional practice in 2010. Flax pod number, seed weight, seed yield, N content, N‐use efficiency, and N‐removal index varied with crop rotations, cultural practices, and years. Canola growth and oil concentration increased with the improved cultural practice as well as flax growth, yield, and quality enhanced with alternate‐year crop rotation and the improved cultural practice in wet years.

Comments

This article is published as Sainju, Upendra M., Andrew W. Lenssen, Brett L. Allen, Jalal D. Jabro, and William B. Stevens. "Stacked crop rotations and cultural practices for canola and flax yield and quality." Agronomy Journal 112 (2020): 2020-2032. doi: 10.1002/agj2.20176.

Description
Keywords
Citation
DOI
Copyright
Collections