Nematicity in the superconducting mixed state of strain detwinned underdoped Ba(Fe1-xCox)(2)As-2

Thumbnail Image
Date
2019-02-28
Authors
Schmidt, J.
Bekeris, V.
Lozano, G. S.
Bortulé, M. V.
Marziali Bermúdez, M.
Hicks, C. W.
Fradkin, E.
Pasquini, G.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames Laboratory
Abstract

Evidence of nematic effects in the mixed superconducting phase of slightly underdoped Ba(Fe1−xCox)2As2 is reported. We have found strong in-plane resistivity anisotropy for crystals in different strain conditions. For these compositions, there is no magnetic long-range order, so the description may be ascribed to the interplay between the superconducting and nematic order parameters. A piezoelectric-based apparatus is used to apply tensile or compressive strain to tune nematic domain orientation in order to examine intrinsic nematicity. Measurements are done under a rotating magnetic field, and the analysis of the angular dependence of physical quantities identifies the cases in which the sample is detwinned. Furthermore, the angular dependence of the data allows us to evaluate the effects of nematicity on the in-plane superconductor stiffness. Our results show that although nematicity contributes in a decisive way to the conduction properties, its contributions to the anisotropy properties of the stiffness of the superconducting order parameter is not as significant in these samples.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections