Whole transcriptome response of chicken spleen and peripheral blood leukocytes to avian pathogenic Escherichia coli

Thumbnail Image
Date
2011-01-01
Authors
Sandford, Erin
Major Professor
Advisor
Susan J. Lamont
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

A greater understanding of the immune response after infection can form the necessary foundation of knowledge needed to enhance immunity through genetic selection. Whole genome microarrays allow for comprehensive analysis of the transcriptome. The transcriptomic responses of spleen and peripheral blood leukocytes (PBL) each displayed differential expression in broiler chickens infected with avian pathogenic Escherichia coli (APEC), the causative agent for colibacillosis. This differential expression was associated with treatment factors of infection status, pathology level and day post-infection. Within the spleen, the largest number of significantly differentially expressed genes was between chickens with a severe pathology and those uninfected: 1,101 genes at 1 day post-infection and 1,723 genes at 5 days post-infection. Significant differences in splenic expression between mild and severe pathology was only noted at 5 days post-infection, for 799 genes. Within PBL, the largest number of significantly differentially expressed genes was between mild and severe pathology on day 5, for 1,914 genes. Significant differences in expression were also noted between severe pathology and uninfected chickens, for 1,097 genes at 1 day post-infection and for 506 genes at 5 days post-infection. In both tissues, a severe pathological state resulted in more induction of gene expression response than repression. Several immune-related gene families, including the Toll-like receptors, cytokines and beta-defensins, were differentially expressed in both tissues. Combining results from the two tissues revealed potential pathway regulation between tissues over time. MAPK pathway signaling in PBL at 1 day post-infection, could be causative for the downstream cytokine and p53 pathway signaling observed in the spleen at 5 days post-infection. Vaccination against an APEC virulence factor generated no discernible difference in gene expression in either tissue, with or without other factors of day, challenge, or pathology, although it was efficacious in reducing pathology, indicating further research is necessary to identify the impact of APEC vaccination on the transcriptome. Combining this knowledge with genotypic markers could help to reveal the genomic locations responsible for conveying APEC resistance, allowing breeders to use this information to reduce the incidence of APEC infection in poultry.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 2011