A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect

dc.contributor.author Coates, Brad S.
dc.contributor.author Walden, Kimberly K. O.
dc.contributor.author Lata, Dimpal
dc.contributor.author Vellichirammal, Neetha Nanoth
dc.contributor.author Mitchell, Robert F.
dc.contributor.author Andersson, Martin N.
dc.contributor.author McKay, Rachel
dc.contributor.author Lorenzen, Marcé D.
dc.contributor.author Grubbs, Nathaniel
dc.contributor.author Wang, Yu-Hui
dc.contributor.author Han, Jinlong
dc.contributor.author Xuan, Jing Li
dc.contributor.author Willadsen, Peter
dc.contributor.author Wang, Huichun
dc.contributor.author French, B. Wade
dc.contributor.author Bansal, Raman
dc.contributor.author Sedky, Sammy
dc.contributor.author Souza, Dariane
dc.contributor.author Bunn, Dakota
dc.contributor.author Meinke, Lance J.
dc.contributor.author Miller, Nicholas J.
dc.contributor.author Siegfried, Blair D.
dc.contributor.author Sappington, Thomas
dc.contributor.author Robertson, Hugh M.
dc.contributor.department Plant Pathology, Entomology and Microbiology
dc.date.accessioned 2024-04-25T14:56:21Z
dc.date.available 2024-04-25T14:56:21Z
dc.date.issued 2023-01-13
dc.description.abstract Background Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown.<br/> Results A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts.<br/> Conclusions Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.
dc.description.comments This article is published as Coates, B.S., Walden, K.K.O., Lata, D. et al. A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect. BMC Genomics 24, 19 (2023). https://doi.org/10.1186/s12864-022-08990-y. <br/>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/4vGXGMyr
dc.language.iso en
dc.publisher BioMed Central Ltd
dc.source.uri https://doi.org/10.1186/s12864-022-08990-y *
dc.subject.disciplines DegreeDisciplines::Life Sciences::Entomology
dc.subject.disciplines DegreeDisciplines::Life Sciences::Genetics and Genomics
dc.subject.disciplines DegreeDisciplines::Life Sciences::Plant Sciences
dc.subject.keywords Genome assembly
dc.subject.keywords Host plant specialization
dc.subject.keywords Differential expression
dc.title A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 0a849144-1b0a-4a0a-bad1-f467faef240f
relation.isOrgUnitOfPublication 159d7e06-88d7-4610-9153-9481a37fbc61
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2023-Sappington-DraftDiabrotica.pdf
Size:
4.36 MB
Format:
Adobe Portable Document Format
Description:
Collections