Interplay between superconductivity and itinerant magnetism in underdoped Ba1−xKxFe2As2 (x = 0.2) probed by the response to controlled point-like disorder

Thumbnail Image
Date
2019-07-04
Authors
Prozorov, Ruslan
Kończykowski, Marcin
Tanatar, Makariy
Wen, Hai-Hu
Fernandes, Rafael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames Laboratory
Abstract

The response of superconductors to controlled introduction of point-like disorder is an important tool to probe their microscopic electronic collective behavior. In the case of iron-based superconductors, magnetic fluctuations presumably play an important role in inducing high-temperature superconductivity. In some cases, these two seemingly incompatible orders coexist microscopically. Therefore, understanding how this unique coexistence state is affected by disorder can provide important information about the microscopic mechanisms involved. In one of the most studied pnictide family, hole-doped Ba1−xKxFe2As2 (BaK122), this coexistence occurs over a wide range of doping levels, 0.16 ≲ x ≲ 0.25. We used relativistic 2.5 MeV electrons to induce vacancy-interstitial (Frenkel) pairs that act as efficient point-like scattering centers. Upon increasing dose of irradiation, the superconducting transition temperature Tc decreases dramatically. In the absence of nodes in the order parameter this provides a strong support for a sign-changing s± pairing. Simultaneously, in the normal state, there is a strong violation of the Matthiessen’s rule and a decrease (surprisingly, at the same rate as Tc) of the magnetic transition temperature Tsm, which indicates the itinerant nature of the long-range magnetic order. Comparison of the hole-doped BaK122 with electron-doped Ba(FexCo1−x)2As2 (FeCo122) with similar Tsm ~ 110 K, x = 0.02, reveals significant differences in the normal states, with no apparent Matthiessen’s rule violation above Tsm on the electron-doped side. We interpret these results in terms of the distinct impact of impurity scattering on the competing itinerant antiferromagnetic and s± superconducting orders.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections