What Do Developers Ask About ML Libraries? A Large-scale Study Using Stack Overflow

Thumbnail Image
Islam, Md Johirul
Nguyen, Hoan Anh
Pan, Rangeet
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Rajan, Hridesh
Professor and Department Chair of Computer Science
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence

Related Units

Journal Issue
Is Version Of

Modern software systems are increasingly including machine learning (ML) as an integral component. However, we do not yet understand the difficulties faced by software developers when learning about ML libraries and using them within their systems. To that end, this work reports on a detailed (manual) examination of 3,243 highly-rated Q&A posts related to ten ML libraries, namely Tensorflow, Keras, scikit-learn, Weka, Caffe, Theano, MLlib, Torch, Mahout, and H2O, on Stack Overflow, a popular online technical Q&A forum. We classify these questions into seven typical stages of an ML pipeline to understand the correlation between the library and the stage. Then we study the questions and perform statistical analysis to explore the answer to four research objectives (finding the most difficult stage, understanding the nature of problems, nature of libraries and studying whether the difficulties stayed consistent over time). Our findings reveal the urgent need for software engineering (SE) research in this area. Both static and dynamic analyses are mostly absent and badly needed to help developers find errors earlier. While there has been some early research on debugging, much more work is needed. API misuses are prevalent and API design improvements are sorely needed. Last and somewhat surprisingly, a tug of war between providing higher levels of abstractions and the need to understand the behavior of the trained model is prevalent.


This pre-print is made available through arxiv: https://arxiv.org/abs/1906.11940.

Tue Jan 01 00:00:00 UTC 2019