Identification of potential genetic variants associated with longevity and lifetime production traits in a Thai Landrace pig population using weighted single-step genome-wide association methods

Thumbnail Image
Supplemental Files
Date
2020-07-31
Authors
Plaengkaeo, S.
Duangjinda, M.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Stalder, Kenneth
Professor
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Longevity and lifetime production traits are of increasing importance in swine breeding schemes worldwide because these traits influence sow productivity and welfare, as well as affecting farm profitability. The Landrace breed makes up one-half of the F1 Large White x Landrace female, which is the most popular maternal line in the breeding herd of commercial pork production systems in Thailand and throughout the world. The objective of this study was to estimate genetic parameters and detect potential genetic variants associated with age at first farrowing (AFF), length of productive life (LPL), lifetime number of piglets born alive (LNBA), lifetime number of piglets weaned (LNW), lifetime wean to first service interval (LW2S) and lifetime pig efficiency (LTP365) in a Thai Landrace pig population. dData were analyzed for 82,346 litters from 12,843 Landrace pigs housed in three farms; all farms were a part of a large commercial production system. Genetic parameters were estimated using a single-step, genomic-BLUP (ssGBLUP) that utilizes general pedigree and genomic relationships. Landrace sows were genotyped with 60K Illumina PorcineSNP60 BeadChip. The genotypes were analyzed by weighted single-step genome-wide association analyses. Heritability estimates for longevity and length of productive life traits were low and ranged from 0.01 to 0.11. The greatest genetic correlations between LPL with LNBA, LNW, LW2S and LTP365 ranged from 0.44 to 0.91. The greatest genetic correlations between LPL and LNBA, LNW, LW2S and LTP365 ranged from 0.44 to 0.91. Based on these results, genetic selection for LPL was not antagonistic with lifetime production. Twenty-seven candidate genes were identified as being associated with one or more traits evaluated in this Landrace pig population. Highlighted genes related to LPL, LNBA, LNW and LTP365 included TMLHE, PDHX and KCNJ6 on SSC13 in this pig population. This constitutes a list of candidate genes that could be incorporated into selection to improve sow longevity and lifetime production traits in the pig industry.

Comments

This article is published as Plaengkaeo, S., M. Duangjinda, and K. J. Stalder. "Identification of potential genetic variants associated with longevity and lifetime production traits in a Thai Landrace pig population using weighted single-step genome-wide association methods." Genet. Mol. Res 19 (2020): gmr18465. doi: 10.4238/gmr18465.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections