Characterization of the <i>brown midrib4</i> gene of maize (<i>Zea mays L.</i>): a step towards enhancing the carbon sequestration capacity of stover

Thumbnail Image
Reed, Danielle
Major Professor
Patrick S. Schnable
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Journal Issue
Is Version Of

A variety of agricultural solutions are being tested to address the recent concern of rising rates of CO2 emissions, one of which is to engineer crops to increase their ability to store atmospheric carbon in soil. By targeting cell wall constituents of crop tissues with longer half-lives, such as lignin, the rate at which fixed CO2 in soil organic matter returns to the atmosphere becomes slowed. Maize is an attractive model organism for this approach, as it is grown worldwide, and has one of the most extensively catalogued plant genomes to date. The objective of this thesis is to provide a better understanding of the regulation of lignin composition and content i.e., genetic components that affect carbon storage in this model organism. This was approached by attempting to clone one of the brown midrib mutants of the phenylpropanoid pathway in maize, bm4. The objective was addressed by a fine-mapping approach, which helped to narrow the region of interest to a smaller interval suitable for cloning attempt. Identification and analysis of recombinants from 2 mapping populations segregating for brown midrib4 and wild-type alleles revealed an interval of 126,786 bp, encompassing 8 candidate genes. mRNA Seq transcriptome analyses of wild-type and mutant midrib tissues revealed transcript accumulation of > 40 reads for 4/8 genes within the interval. Further analysis revealed three of these 4 genes exhibit significant differential transcript accumulation between wild-type and mutant samples, with the greatest fold changes (1.92x) reported for a gene encoding the enzyme Folylpolyglutamate Synthetase (GRMZM2G393334). Transposon tagging was used to identify additional bm4 mutants. Cytological sections of midribs were stained and compared to explore subtle differences in mutants of different pedigrees. The continued characterization of bm4 in combination with other efforts to clone the genes underlying the brown midrib mutants will facilitate the understanding of their roles and functions in cell-wall composition, the biosynthesis of lignin, and potential for use in enhancing the carbon storage capabilities of maize tissues.

Fri Jan 01 00:00:00 UTC 2010