Twin-screw Extrusion Processing of Vegetable-Based Rainbow trout (Oncorhynchus mykiss) Feeds Using Graded Levels of High Protein Fermented Soybean Meal (FSBM)

Thumbnail Image
Fallahi, Parisa
Muthukumarappan, Kasiviswanathan
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Rosentrater, Kurt
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of

Fast-paced growth in global aquaculture has elevated concerns about the high costs of aquafarm production and potential water pollution. Thus, finding eco-friendly and more sustainable alternative protein sources for fish diets is of vital importance to the industry. A twin-screw extrusion processing study was performed using three ingredient blends formulated with graded levels of FSBM (0, 80% and 100% db) as the fishmeal replacer, in combination with appropriate amounts of other required ingredients for rainbow trout diets. Increasing the FSBM content from 0% to 100% resulted in a substantial increase in brightness, greenness, and yellowness, and a decrease in bulk density, water absorption index, and unit density (UD) values of the extrudates by 12.5%, 73%, 30%, 7.3%, 27.5%, and 10%, respectively. Compared to the control diet (100% fishmeal-based), extrudate moisture contents increased by 15.2% and 22% for the diets containing 80 and 100% FSBM, respectively; although no change was observed by increasing FSBM from 80 to 100%. The highest water solubility index (WSI) was obtained for 80% FSBM; however, further increasing FSBM did not influence the WSI significantly. All extrudates exhibited low water activity and high pellet durability values (less than 0.5 and more than 99.5%, respectively). The most buoyant extrudates were obtained using total FSBM inclusion, with UD and expansion ratio values of nearly 660 kg/m3 and 1.3, respectively. Overall, results indicated that FSBM can be a promising alternative protein in rainbow trout feed production.


This is an ASABE Meeting Presentation, Paper No. 121337565.

Sun Jan 01 00:00:00 UTC 2012