Spatial multiresolution cluster detection method

Thumbnail Image
Date
2013-01-01
Authors
Zhang, Lingsong
Zhu, Zhengyuan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
StatisticsCenter for Survey Statistics and Methodology (CSSM)
Abstract

A novel multi-resolution cluster detection (MCD) method is proposed to identify irregularly shaped clusters in space. Multi-scale test statistic on a single cell is derived based on likelihood ratio statistic for Bernoulli sequence, Poisson sequence and Normal sequence. A neighborhood variability measure is defined to select the optimal test threshold. The MCD method is compared with single scale testing methods controlling for false discovery rate and the spatial scan statistics using simulation and f-MRI data. The MCD method is shown to be more effective for discovering irregularly shaped clusters, and the implementation of this method does not require heavy computation, making it suitable for cluster detection for large spatial data.

Comments

This is a manuscript of an article published as Zhang, Lingsong, and Zhengyuan Zhu. "Spatial multiresolution cluster detection method." Statistics and Its Interface 6, no. 1 (2013): 65-77. DOI: 10.4310/SII.2013.v6.n1.a7. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections