Near-Ground Pressure and Wind Measurements in Tornadoes

Thumbnail Image
Date
2010-01-01
Authors
Karstens, Christopher
Samaras, Timothy
Lee, Bruce
Finley, Catherine
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gallus, William
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Since the spring of 2002, tornadoes were sampled on nine occasions using Hardened In-Situ Tornado Pressure Recorder probes, video probes, and mobile mesonet instrumentation. This study describes pressure and, in some cases, velocity data obtained from these intercepts. In seven of these events, the intercepted tornadoes were within the radar-indicated or visually identified location of the supercell low-level mesocyclone. In the remaining two cases, the intercepted tornadoes occurred outside of this region and were located along either the rear-flank downdraft gust front or an internal rear-flank downdraft surge boundary. The pressure traces, sometimes augmented with videography, suggest that vortex structures ranged from single-cell to two-cell, quite similar to the swirl-ratio-dependent continuum of vortex structures shown in laboratory and numerical simulations. Although near-ground tornado observations are quite rare, the number of contemporary tornado measurements now available permits a comparative range of observed pressure deficits for a wide variety of tornado sizes and intensities to be presented.

Comments

This article is from Monthly Weather Review 138 (2010): 2570, doi: 10.1175/2010MWR3201.1. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections