Crystal Growth, Structural Transitions, and Magnetic Properties of the Fluorite-Related Osmates:  Sm3OsO7, Eu3OsO7, and Gd3OsO7

Thumbnail Image
Supplemental Files
Date
2005-01-01
Authors
Gemmill, William
Smith, Mark
Mozharivskyj, Yurij
zur Loye, Hans-Conrad
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, Gordon
University Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames Laboratory
Abstract

The Ln3OsO7 (Ln = Sm, Eu, Gd) compounds were grown as single crystals from molten hydroxide fluxes. At temperatures above 235, 330, and 430 K, respectively, the Ln3OsO7 (Ln = Sm, Eu, Gd) compounds exist in the orthorhombic space group Cmcm. When they are cooled below these temperatures, the compounds undergo a structural phase transition from space group Cmcm to P21nb. The structure transition results in a loss of lattice centering, a doubling of the b axis, a distortion of the vertex-shared Os−O chains, and a reduction in the coordination of one of the rare earth cations from 8-fold to 7-fold. Sm3OsO7 and Eu3OsO7 exhibit complex magnetic behavior below about 50 K, and Gd3OsO7 shows a ferromagnetic-like order at 34 K in applied fields of less than 10 kG.

Comments

Reprinted (adapted) with permission from Inorg. Chem., 2005, 44 (20), pp 7047–7055. Copyright 2005 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2005
Collections