Surface Plasmon Resonance Enhanced Transmission of Light through Gold-Coated Diffraction Gratings

Thumbnail Image
Supplemental Files
Date
2008-01-01
Authors
Singh, Bipin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hillier, Andrew
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Narrow peaks are observed in the transmission spectra of p-polarized light passing through a thin gold film that is coated on the surface of a transparent diffraction grating. The spectral position and intensity of these peaks can be tuned over a wide range of wavelengths by simple rotation of the grating. The wavelengths where these transmission peaks are observed correspond to conditions where surface plasmon resonance occurs at the gold−air interface. Light diffracted by the grating couples with surface plasmons in the metal film to satisfy the resonant condition, resulting in enhanced light transmission through the film. Notably, this phenomenon is not observed at flat, gold-coated surfaces or uncoated gratings, where coupling to surface plasmons does not occur. The nature of the coupling and, thus, the details of light transmission are governed by the momentum matching conditions between the diffracted light and the surface plasmons. In the presence of bound analytes or surface films, the enhanced transmission peaks are red-shifted, making a simple, yet highly responsive sensing platform. The utility of this platform is demonstrated for ex situ sensing by analyzing thin films of various thicknesses and detecting a model immunoreaction between bovine serum albumin and anti-bovine serum albumin. This grating-based transmission surface plasmonic device represents a simple and sensitive platform, which can be readily tuned to enhance performance and be used in the study of a variety of surface adsorption processes or analysis of biomolecular interactions.

Comments

This article is from Analytical Chemistry80 (2008): 3803-3810, doi:10.1021/ac800045a. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2008
Collections