Aggregate-Size Stability Distribution and Soil Stability

Thumbnail Image
Date
2004-01-01
Authors
Márquez, C. O.
Garcia, V. J.
Cambardella, Cynthia
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Schultz, Richard
University Professor
Person
Isenhart, Thomas
Professor
Research Projects
Organizational Units
Organizational Unit
Natural Resource Ecology and Management
The Department of Natural Resource Ecology and Management is dedicated to the understanding, effective management, and sustainable use of our renewable natural resources through the land-grant missions of teaching, research, and extension.
Journal Issue
Is Version Of
Versions
Series
Abstract

A new theoretical and experimental framework that permits an accurate determination of aggregate-size stability distribution is presented. The size-stability distribution in addition to estimating aggregate-size distribution distinguishes between amounts of stable and unstable macroaggregates (>250 μm). The determination of aggregate-size stability distribution involves the assumptions that soil aggregates can be categorized in terms of their size and water stability (slaking resistance). Experimentally this procedure involves the slaked and capillary-wetted pretreatments; and a subsequent slaking treatment of aggregates >250 μm in size. We also propose the stable aggregates index (SAI) and the stable macroaggregates index (SMaI) for studying soil stability based on aggregate resistance to slaking. These indices account for the total weighted average of stable aggregates and the total weighted average of stable macroaggregates, respectively. Both the SAI and the SMaI indices were shown to be sensitive to the effects of vegetation on soil stability under different riparian buffer communities. The SAI and the SMaI indices were higher in surface soils under cool-season grass than any of the other treatments. These soils samples are well aggregated with SAI = 74% and SMaI = 56% followed by SAI = 55% and SMaI = 37% under existing riparian forest, SAI = 40% and SMaI = 21% under 7-yr switchgrass and SAI = 36% and SMaI = 18% under cropped system.

Comments

This article is from Soil Science Society of America Journal 68 (2004): 725, doi:10.2136/sssaj2004.7250.

Description
Keywords
Citation
DOI
Copyright
Collections