Virtual Operator Modeling Method for Excavator Trenching

Thumbnail Image
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Dorneich, Michael
Steward, Brian
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of

This research investigated how machine operator expertise, strategies, and decision-making can be integrated into operator models that simulate authentic human behavior in construction machine operations. Physical prototype tests of construction machines require significant time and cost. However, computer-based simulation is often limited by the fidelity in which human operators are modeled. A greater understanding of how highly skilled operators obtain high machine performance and productivity can inform machine development and advance construction automation technology. Operator interviews were conducted to build a framework of tasks, strategies, and cues commonly used while controlling an excavator through repeating work cycles. A closed loop simulation demonstrated that an operator model could simulate the trenching work cycle with multiple operator strategies, and adapt to different vehicle and work site settings. A Virtual Operator Model that captures human expert behaviors can be used to assess vehicle characteristics and efficiency, and inform the design of automation systems.


This is a manuscript of an article from Automation in Construction 70 (2016): 14, doi: 10.1016/j.autcon.2016.06.013. Posted with permission.

Fri Jan 01 00:00:00 UTC 2016