Measurement of minority carrier lifetimes in nanocrystalline silicon devices using reverse-recovery transient method

Thumbnail Image
Date
2008-01-01
Authors
Reusswig, Philip
Major Professor
Advisor
Vikram L. Dalal
Gary Tuttle
Kristen Constant
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECpE) contains two focuses. The focus on Electrical Engineering teaches students in the fields of control systems, electromagnetics and non-destructive evaluation, microelectronics, electric power & energy systems, and the like. The Computer Engineering focus teaches in the fields of software systems, embedded systems, networking, information security, computer architecture, etc.

History
The Department of Electrical Engineering was formed in 1909 from the division of the Department of Physics and Electrical Engineering. In 1985 its name changed to Department of Electrical Engineering and Computer Engineering. In 1995 it became the Department of Electrical and Computer Engineering.

Dates of Existence
1909-present

Historical Names

  • Department of Electrical Engineering (1909-1985)
  • Department of Electrical Engineering and Computer Engineering (1985-1995)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

A new technique for measuring minority carrier lifetimes in p-i-n device configurations, and is used to measure the effective hole lifetimes in nanocrystalline silicon materials. The technique is the reverse-recovery transient method. A forward current in a p-n junction is suddenly switched, and a high constant reverse current flows for a certain period of time. This time is related to the time the injected minority carriers take to recombine in the base. The technique allows for analysis of hole lifetimes in typical thin film nanocrystalline silicon device with very common testing equipment.;The samples used for testing were fabricated using VHF-PECVD reactors using silane and hydrogen as source gases. Both hydrogen profiled nanocrystalline silicon and superlattice nanocrystalline silicon devices were fabricated. The shallow and deep donor states were measured using a junction capacitance technique. The minority carrier diffusion length was determined using a combination of capacitance and quantum efficiency techniques.;The measured hole lifetimes was seen to range from 200-600 ns. Lifetimes were plotted versus inverse defect density, and a linear correlation was seen. This showed the lifetimes followed the Shockley-Read-Hall recombination model. It was also seen for devices deposited at high temperature that a final hydrogen plasma treatment or hydrogen anneal step, the lifetimes and diffusion lengths improved, possibly due to grain boundary passivation. Finally, it was shown that lifetimes in superlattice devices correlated with defect density and diffusion lengths indicating transport in these samples is the same as hydrogen profiled samples.;This technique has been demonstrated for the first time in nanocrystalline silicon devices. An advantage to measuring lifetimes with this technique is that the actual device was not modified in any way to accommodate the measurement. Also, the method only required equipment that can be found in any common electronics lab.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2008