Atomically Intimate Contact between Solid Electrolytes and Electrodes for Li Batteries

Thumbnail Image
Li, Fuzhen
Li, Jingxuan
Zhu, Feng
Liu, Ting
Xu, Ben
Kim, Tae-Hoon
Kramer, Matthew
Ma, Cheng
Zhou, Lin
Nan, Ce-Wen
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence

Related Units

Journal Issue
Is Version Of
Ames Laboratory

Solid electrolytes, as a promising replacement for the flammable liquid electrolyte in conventional Li-ion batteries, may greatly alleviate the safety issues and improve the energy density. However, mainstream electrodes are also solid. If solid electrolytes were employed, creating intimate electrode-electrolyte contact similar to that between solid and liquid would be quite difficult. Here we discovered that, by forming epitaxial interfaces, such a seamless solid-solid contact can happen between two widely studied systems: the Li-rich layered electrode and perovskite solid electrolyte. Atomic-resolution electron microscopy unambiguously demonstrated that the former can be epitaxially embedded into the latter. The solid-solid composite electrode formed this way exhibited a rate capability no lower than the one based on solid-liquid contact. With the periodic misfit dislocations reconciling structural differences, such epitaxy can tolerate large lattice mismatch, and thus may occur between many layered electrodes and perovskite solid electrolytes.