Formation and coarsening of Ag(110) bilayer islands on NiAl(110): STM analysis and atomistic lattice-gas modeling

Thumbnail Image
Date
2010-01-01
Authors
Han, Yong
Ünal, Barış
Jing, Dapeng
Qin, Feili
Jenks, Cynthia
Liu, Da-Jiang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Scanning tunneling microscopy analysis of the initial stages of film growth during deposition of Ag on NiAl(110) reveals facile formation of bilayer Ag(110) islands at temperatures of 130 K and above. Annealing subsequent to deposition at 130 K induces coarsening of the bilayer island distribution. The thermodynamic driving force for bilayer island formation reflects a lower relative surface energy for films of even layer thicknesses. This feature derives from quantum size effects due to electron confinement in the Ag film. The kinetics of island formation and relaxation is controlled by terrace and edge-diffusion barriers, detachment barriers, interlayer diffusion barriers, and layer-dependent adsorption and interaction energies. These key energies are determined from density-functional theory analysis and incorporated into an atomistic lattice-gas model for homogeneous island formation, where specification of the adatom hop rates is consistent with detailed balance. Model analysis via kinetic Monte Carlo simulation elucidates the role of strongly anisotropic interactions in development during deposition of elongated island growth shapes and also in facilitating upward mass transport needed for bilayer island formation. The model succeeds in recovering island densities at lower temperatures but experimental densities exceed model predictions at higher temperatures plausibly due to heterogeneous nucleation at surface defects. The same model successfully describes postdeposition coarsening of small islands grown at 130 K.

Comments

This article is from Physical Review B 81, no. 11 (2010): 115462, doi:10.1103/PhysRevB.81.115462.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections