Applying an Integrated Refuge to Manage Western Corn Rootworm (Coleoptera: Chrysomelidae): Effects on Survival, Fitness, and Selection Pressure

Thumbnail Image
Date
2013-10-01
Authors
Petzold-Maxwell, Jennifer
Alves, Analiza
Estes, Ronald
Gray, Michael
Meinke, Lance
Shields, Elson
Thompson, Stephen
Tinsley, Nicholas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gassmann, Aaron
Professor
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

The refuge strategy can delay resistance of insect pests to transgenic maize producing toxins from Bacillus thuringiensis (Bt). This is important for the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), because of its history of adaptation to several management practices. A 2-yr study across four locations was conducted to measure the effects of integrated refuge (i.e., blended refuge) on western corn rootworm survival to adulthood, fitness characteristics, and susceptibility to Bt maize in the subsequent generation. The treatments tested in this study were as follows: a pure stand of Bt maize (event DAS-59122-7, which produces Bt toxins Cry34Ab1/Cry35Ab1), a pure stand of refuge (non-Bt maize), and two variations on an integrated refuge consisting of 94.4% Bt maize and 5.6% non-Bt maize. Within the two integrated refuge treatments, refuge seeds received a neonicotinoid insecticidal seed treatment of either 1.25 mg clothianidin per kernel or 0.25 mg thiamethoxam per kernel. Insects in the pure stand refuge treatment had greater survival to adulthood and earlier emergence than in all other treatments. Although fecundity, longevity, and head capsule width were reduced in treatments containing Bt maize for some site by year combinations, Bt maize did not have a significant effect on these factors when testing data across all sites and years. We found no differences in susceptibility of larval progeny to Bt maize in bioassays using progeny of adults collected from the four treatments.

Comments

This article is from Journal of Economic Entomology 106 (2013): 2195, doi:10.1603/EC13088. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections