Understanding phenyloxenium ions: Spectroscopic properties, spin configurations and reactivities

Thumbnail Image
Date
2020-01-01
Authors
Qiu, Yunfan
Major Professor
Advisor
Arthur H Winter
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

It is believed that understanding the reactive intermediates is essential to unveil mechanisms of synthetic chemistry and biological processes. In the library of reactive intermediates, oxenium ions are highly reactive with the formula R−O+. These reactive intermediates possess lone pairs of electrons on their central oxygen atoms, permitting different energetically accessible electronic configurations. More importantly, reactive intermediates with diverse electronic structures would very likely bear distinct reactivities, and thus various reaction pathways may occur. In general, intermediates with closed-shell singlet states usually react as electrophiles, while ions with triplet states show typical radical reaction pattern, such as hydrogen atom abstractions. Moreover, the chemical formula of oxenium ions suggest that these species are isoelectronic to the better understood nitrene intermediates but bear a formally positive charge on a hypovalent oxygen atom, which is substantially interesting considering the high electronegativity value of oxygen element. Although oxenium ions have been proposed as intermediates in numerous processes, relative studies about these ions themselves are surprisingly rare, largely because the isolation of oxenium ions is utterly difficult due to the extremely short lifetimes.

To probe these exceedingly short-lived intermediates, a combination of theoretical calculation and experimental laser flash photolysis (LFP) has been applied. On one hand, LFP technology has allowed us to directly observe these reactive intermediates within femtosecond time scale in the aspects of the absorption spectroscopy, Raman spectroscopy, etc. On the other, owing to the advanced theoretical models, computational investigation helps us to validate and interpret the experimental spectroscopic data. Moreover, the theoretical approach also provides a close insight to the spin configurations of these reactive intermediates, guiding us to design oxenium ions with desired electronic configurations. In this manner, appropriate photo-precursors are strongly demanded for generating corresponding oxenium ions photochemically.

My research focuses on synthetically developing new photoprecursors which can potentially produce corresponding oxenium ions possessing intriguing electronic structures. LFP studies perform direct observation of these transient species. By comparison to the theoretical predictions, each transient species collected by LFP shall be attributed correctly. Photo product studies are conducted to determine the reactivities of these reactive intermediate. I have also carried out my investigation in searching for anomalous electronic configurations of oxenium ions using computational methods. Oxenium ions with different electronic configurations exhibit distinct reactivities, which are potentially useful for future synthetic applications. More importantly, reactive intermediates bearing triplet states, if well stabilized, are capable of acting as practical magnetic materials.

Comments
Description
Keywords
Citation
Source
Copyright
Fri May 01 00:00:00 UTC 2020