Source-like Solution for Radial Imbibition into a Homogeneous Semi-infinite Porous Medium

Thumbnail Image
Date
2012-03-06
Authors
Xiao, Junfeng
Stone, Howard
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Attinger, Daniel
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Abstract

We describe the imbibition process from a point source into a homogeneous semi-infinite porous material. When body forces are negligible, the advance of the wetting front is driven by capillary pressure and resisted by viscous forces. With the assumption that the wetting front assumes a hemispherical shape, our analytical results show that the absorbed volume flow rate is approximately constant with respect to time, and that the radius of the wetting evolves in time as rt1/3. This cube-root law for the long-time dynamics is confirmed by experiments using a packed cell of glass microspheres with average diameter of 42 μm. This result complements the classical one-dimensional imbibition result where the imbibition length ≈ t1/2, and studies in axisymmetric porous cones with small opening angles where ≈t1/4 at long times.

Comments

Reprinted with permission from Langmuir 28 (2012): 4208–4212, doi:10.1021/la204474f. Copyright 2012 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections