Electrochemical Glucose Sensors Enhanced by Methyl Viologen and Vertically Aligned Carbon Nanotube Channels

Thumbnail Image
Brownlee, Benjamin
Bahari, Meisam
Harb, John
Iverson, Brian
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Claussen, Jonathan
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of

Free-standing, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 µm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating at a low potential of -0.2 V vs. Ag/AgCl. As a comparison, enzymatic VACNT sensors with platinum nano-urchins were functionalized with glucose oxidase by covalent binding (EDC/NHS) or by polymer entrapment (PEDOT) and operated in phosphate buffered saline (PBS). With normalization by the overall cross-sectional area of the flow (0.713 cm2), the sensitivity of the MV, enzyme-in-solution, and covalent sensors were 45.93, 18.77, and 1.815 mA cm-2 mM-1, respectively. Corresponding limits of detection were 100, 194, and 311 nM glucose. The linear sensing ranges for the sensors were: 250 nM – 200 µM glucose for the MV sensor, 500 nM – 200 µM glucose for the enzyme-in-solution sensor, and 1 µM – 6 mM glucose for the covalent sensor. The flow cell and sensor cross-sectional area were scaled down (0.020 cm2) to enable detection from 200 µL of glucose with MV by flow injection analysis (FIA). The sensitivity of the small MV sensor was 5.002 mA cm-2 mM-1, with a limit of detection of 360 nM glucose and a linear range up to at least 150 µM glucose. The small MV sensor has the potential to measure glucose levels found in 200 µL of saliva.


This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.html.

Subject Categories
Mon Jan 01 00:00:00 UTC 2018