Hadamard diagonalizable graphs of order at most 36
Hadamard diagonalizable graphs of order at most 36
dc.contributor.author | Breen, Jane | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Butler, Steve | |
dc.contributor.author | Fuentes, Melissa | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Phillips, Michael | |
dc.contributor.author | Riasanovsky, Alexander | |
dc.contributor.author | Song, Sung-Yell | |
dc.contributor.author | Villagrán, Ralihe | |
dc.contributor.author | Wiseman, Cedar | |
dc.contributor.author | Zhang, Xiaohong | |
dc.contributor.department | Mathematics | |
dc.date | 2020-07-27T15:30:08.000 | |
dc.date.accessioned | 2021-02-26T02:54:13Z | |
dc.date.available | 2021-02-26T02:54:13Z | |
dc.date.copyright | Wed Jan 01 00:00:00 UTC 2020 | |
dc.date.issued | 2020-07-17 | |
dc.description.abstract | <p>If the Laplacian matrix of a graph has a full set of orthogonal eigenvectors with entries ±1, then the matrix formed by taking the columns as the eigenvectors is a Hadamard matrix and the graph is said to be Hadamard diagonalizable.<br />In this article, we prove that if n=8k+4 the only possible Hadamard diagonalizable graphs are Kn, Kn/2,n/2, 2Kn/2, and nK1, and we develop an efficient computation for determining all graphs diagonalized by a given Hadamard matrix of any order. Using these two tools, we determine and present all Hadamard diagonalizable graphs up to order 36. Note that it is not even known how many Hadamard matrices there are of order 36.</p> | |
dc.description.comments | <p>This preprint is made available through arXiv: <a href="https://arxiv.org/abs/2007.09235">https://arxiv.org/abs/2007.09235</a>.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/239/ | |
dc.identifier.articleid | 1246 | |
dc.identifier.contextkey | 18666566 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/239 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/96634 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/239/2020_Lidicky_HadamardDiagonalizablePreprint.pdf|||Fri Jan 14 22:50:08 UTC 2022 | |
dc.subject.disciplines | Algebra | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.subject.keywords | Hadamard matrix | |
dc.subject.keywords | Laplacian matrix | |
dc.subject.keywords | Cayley graph | |
dc.subject.keywords | graph product | |
dc.subject.keywords | experimental mathematics | |
dc.title | Hadamard diagonalizable graphs of order at most 36 | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
- Name:
- 2020_Lidicky_HadamardDiagonalizablePreprint.pdf
- Size:
- 763.82 KB
- Format:
- Adobe Portable Document Format
- Description: