Remarkably Robust Monomeric Alkylperoxyzinc Compounds from Tris(oxazolinyl)boratozinc Alkyls and O2

Supplemental Files
Date
2012-07-30
Authors
Mukherjee, Debabrata
Ellern, Arkady
Sadow, Aaron
Sadow, Aaron
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Chemistry
Organizational Unit
Journal Issue
Series
Department
Ames LaboratoryChemistry
Abstract

Metal alkylperoxides are remarkable, highly effective, yet often thermally unstable, oxidants that may react through a number of possible pathways including O–O homolytic cleavage, M–O homolytic cleavage, nucleophilic O-atom transfer, and electrophilic O-atom transfer. Here we describe a series of zinc alkyl compounds of the type ToMZnR (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate; R = Et, n-C3H7, i-C3H7, t-Bu) that react with O2 at 25 °C to form isolable monomeric alkylperoxides ToMZnOOR in quantitative yield. The series of zinc alkylperoxides is crystallographically characterized, and the structures show systematic variations in the Zn–O–O angle and O–O distances. The observed rate law for the reaction of ToMZnEt (2) and O2 is consistent with a radical chain mechanism, where the rate-limiting SH2 step involves the interaction of •OOR and ToMZnR. In contrast, ToMZnH and ToMZnMe are unchanged even to 120 °C under 100 psi of O2 and in the presence of active radical chains (e.g., •OOEt). This class of zinc alkylperoxides is unusually thermally robust, in that the compounds are unchanged after heating at 120 °C in solution for several days. Yet, these compounds are reactive as oxidants with phosphines. Additionally, an unusual alkylperoxy group transfer to organosilanes affords ToMZnH and ROOSiR3′.

Comments

Reprinted (adapted) with permission from Journal of the American Chemical Society 134 (2012): 13018, doi: 10.1021/ja303440n. Copyright 2012 American Chemical Society.

Description
Keywords
Citation
DOI
Collections