Using Resistant Prey Demonstrates That Bt Plants Producing Cry1Ac, Cry2Ab, and Cry1F Have No Negative Effects on Geocoris punctipes and Orius insidiosus

Tian, Jun-Ce
Long, Li-Ping
Wang, Xiang-Ping
Naranjo, Steven
Romeis, Jörg
Hellmich, Richard
Wang, Ping
Shelton, Anthony
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Journal Issue

Geocoris punctipes (Say) and Orius insidiosus (Say) are generalist predators found in a wide range of crops, including cotton (Gossypium hirsutum L. ) and maize (Zea mays L. ), where they provide important biological control services by feeding on an array of pests, including eggs and small larvae of caterpillars. A high percentage of cotton and maize in the United States and several other countries are transgenic cultivars that produce one or more of the insecticidal Cry proteins ofBacillus thuringiensis Berliner (Bt). Here we quantify effects of three Cry proteins on the life history of these predators over two generations when they are exposed to these Cry proteins indirectly through their prey. To eliminate the confounding prey quality effects that can be introduced by Bt-susceptible prey, we used Cry1Ac/Cry2Ab-resistant Trichoplusia ni (Hübner) and Cry1 F-resistantSpodoptera frugiperda (J.E. Smith) in a series of tri-trophic studies. Survival, development, adult mass, fecundity, and fertility were similar when predators consumed larvae feeding on Cry1Ac/Cry2Ab cotton or Cry1 F maize compared with prey feeding on isogenic or near-isogenic cotton or maize. Repeated exposur of the same initial cohort over a second generation also resulted in no differences in life-history traits when feeding on non-Bt- or Bt-fed prey. Enzyme-linked immunosorbent assay showed that predators were exposed to Bt Cry proteins from their prey and that these proteins became increasingly diluted as they moved up the food chain. Results show a clear lack of effect of three common and widespread Cry proteins on these two important predator species. The use of resistant insects to eliminate prey quality effects provides a robust and meaningful assessment of exposure and hazard.


This article is from Environmental Entomology 43 (2014): 242–251, doi:10.1603/EN13184.

Transgenic Bt crop, Trichoplusia ni, Spodoptera frugiperda, Biological control service, Prey quality