Machine Learning Models for Political Video Advertisement Classification

Date
2017-01-01
Authors
Banerjee, Boudhayan
Major Professor
Adisak Sukul
Wallapak Tavanapong
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Computer Science
Organizational Unit
Journal Issue
Series
Department
Computer Science
Abstract

Investment in online political ad marketing is gaining traction very rapidly. In the United States, the 2016 presidential election campaign witnessed a substantial increase in political advertisement expenditure on online platforms like YouTube. Therefore, political researchers are interested in analyzing trends of political ads in an online medium. But currently, there is no existing method or application that can classify political advertisement from a large dataset of online ads. In this paper, we attempted to solve this problem by proposing a model that can automatically classify political video advertisements using machine learning algorithms such as Support Vector Machine, Linear Regression, and Naïve Bayes classifier. We will also focus on feature engineering for this classification problem. We applied text features and non-text features like color and facial features for classification purposes. We trained 3 different models with a different feature sets and compare results among them. We also created an ensemble with these 3 models and achieved an F1-score of 0.97.

Comments
Description
Keywords
Citation
DOI