Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?

Date
2017-01-01
Authors
Bowling, David
Schulze, Emily
Hall, Steven
Hall, Steven
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

We revisit a classic ecohydrological study that showed streamside riparian trees in a semiarid mountain catchment did not use perennial stream water. The original study suggested that mature individuals of Acer negundo, Acer grandidentatum, and other species were dependent on water from “deeper strata,” possibly groundwater. We used a dual stable isotope approach (δ18O and δ2H) to further examine the water sources of these trees. We tested the hypothesis that groundwater was the main tree water source, but found that neither groundwater nor stream water matched the isotope composition of xylem water during two growing seasons. Soil water (0–1 m depth) was closest to and periodically overlapped with xylem water isotope composition, but overall, xylem water was isotopically enriched compared to all measured water sources. The “two water worlds” hypothesis postulates that soil water comprises isotopically distinct mobile and less mobile pools that do not mix, potentially explaining this disparity. We further hypothesized that isotopic effects during snowpack metamorphosis impart a distinct isotope signature to the less mobile soil water that supplies summer transpiration. Depth trends in water isotopes following snowmelt were consistent with the two water worlds hypothesis, but snow metamorphic isotope effects could not explain the highly enriched xylem water. Thus, the dual isotope approach did not unambiguously determine the water source(s) of these riparian trees. Further exploration of physical, geochemical, and biological mechanisms of water isotope fractionation and partitioning is necessary to resolve these data, highlighting critical challenges in the isotopic determination of plant water sources.

Comments

This is the peer reviewed version of the following article: Bowling, David R., Emily S. Schulze, and Steven J. Hall. "Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?." Ecohydrology 10, no. 1 (2017): e1771, which has been published in final form at doi: 10.1002/eco.1771 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Description
Keywords
Citation
DOI
Collections