The influence of Microphysics in the Formation of Intense Wake Lows: A Numerical Modeling Study
The influence of Microphysics in the Formation of Intense Wake Lows: A Numerical Modeling Study
dc.contributor.author | Gallus, William | |
dc.contributor.author | Gallus, William | |
dc.contributor.department | Geological and Atmospheric Sciences | |
dc.date | 2020-12-20T01:58:07.000 | |
dc.date.accessioned | 2021-02-25T23:44:21Z | |
dc.date.available | 2021-02-25T23:44:21Z | |
dc.date.copyright | Mon Jan 01 00:00:00 UTC 1996 | |
dc.date.issued | 1996-10-01 | |
dc.description.abstract | <p>A two-dimensional cloud model is used to investigate whether microphysical processes alone within the stratiform rain regions of mesoscale convection systems can induce strong descent and intense surface wake lows accompanying such systems. Idealized simulations are run with a domain that captures the back edge of the stratiform rain region. A simplified microphysical field, representing snow alone, is prescribed within the stratiform cloud to produce radar reflectivities similar to observations. When the prescribed snow field is assumed time-independent, strong subsidence develops but does not induce an intense wake low since microphysical cooling strongly opposes adiabatic warming. Simply increasing snow quantities, although resulting in heavier rain rates and stronger subsidence, does not produce significant pressure falls. However, when precipitation rates are prescribed to decrease with time as might occur with collapsing precipitation cores, subsidence induces greater pressure falls, and a tighter pressure gradient near the wake low, in better agreement with observations.</p> | |
dc.description.comments | <p>This article is published as Gallus Jr, William A. "The influence of microphysics in the formation of intense wake lows: A numerical modeling study." <em>Monthly Weather Review</em> 124, no. 10 (1996): 2267-2281. DOI: <a href="https://doi.org/10.1175/1520-0493(1996)124<2267:TIOMIT>2.0.CO;2" target="_blank">10.1175/1520-0493(1996)1242.0.CO;2</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/ge_at_pubs/322/ | |
dc.identifier.articleid | 1339 | |
dc.identifier.contextkey | 20708707 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | ge_at_pubs/322 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/96344 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/ge_at_pubs/322/1996_GallusWilliam_InfluenceMicrophysics.pdf|||Fri Jan 14 23:35:25 UTC 2022 | |
dc.source.uri | 10.1175/1520-0493(1996)124<2267:TIOMIT>2.0.CO;2 | |
dc.subject.disciplines | Meteorology | |
dc.title | The influence of Microphysics in the Formation of Intense Wake Lows: A Numerical Modeling Study | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 782ee936-54e9-45de-a7e6-2feb462aea2a | |
relation.isOrgUnitOfPublication | 29272786-4c4a-4d63-98d6-e7b6d6730c45 |
File
Original bundle
1 - 1 of 1
- Name:
- 1996_GallusWilliam_InfluenceMicrophysics.pdf
- Size:
- 1.26 MB
- Format:
- Adobe Portable Document Format
- Description: