Desulfurizing Coal with Alkaline Solutions Containing Dissolved Oxygen

Thumbnail Image
Supplemental Files
Date
1977
Authors
Tai, C.Y.
Graves, G.V.
Wheelock, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

The extraction of pyritic sulfur from coal by leaching the comminuted material with hot aqueous solutions containing dissolved oxygen has been demonstrated in numerous laboratory experiments (1-6). Although acidic solutions have generally been used for such experiments, basic solutions appear to offer several important advantages. Thus Majima and Peters (7) showed that the rate of extraction of sulfur from relatively pure pyrite is much greater in basic solutions containing dissolved oxygen than in neutral solutions. Moreover it has been shown recently that basic solutions containing ammonium hydroxide and oxygen can extract a significant portion of the organic sulfur as well as most of the inorganic sulfur from coal at relatively moderate temperatures (e.g., 130°C) (4,5) whereas higher temperatures (150°-200°C) seem to be required with acidic solutions to remove organic sulfur (6). Furthermore some types of basic solutions are much less corrosive towards the common materials of construction than acidic solutions.

Comments

Reprinted (adapted) with permission from Coal Desulfurization Chapter 15, pp 182–197 DOI: 10.1021/bk-1977-0064.ch015. Copyright 1977 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 1977
Collections