Carbon allocation in forest ecosystems

Thumbnail Image
Date
2007-10-01
Authors
Litton, Creighton
Raich, James
Ryan, Michael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Raich, James
Professor Emeritus
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit time; and partitioning, the fraction of gross primary productivity (GPP) used by a component. Can annual carbon flux and partitioning be inferred from biomass? Our survey revealed that biomass was poorly related to carbon flux and to partitioning of photosynthetically derived carbon, and should not be used to infer either. Are component fluxes correlated? Carbon fluxes to foliage, wood, and belowground production and respiration all increased linearly with increasing GPP (a rising tide lifts all boats). Autotrophic respiration was strongly linked to production for foliage, wood and roots, and aboveground net primary productivity and total belowground carbon flux (TBCF) were positively correlated across a broad productivity gradient. How does carbon partitioning respond to variability in resources and environment? Within sites, partitioning to aboveground wood production and TBCF responded to changes in stand age and resource availability, but not to competition (tree density). Increasing resource supply and stand age, with one exception, resulted in increased partitioning to aboveground wood production and decreased partitioning to TBCF. Partitioning to foliage production was much less sensitive to changes in resources and environment. Overall, changes in partitioning within a site in response to resource supply and age were small (Do priorities exist for the products of photosynthesis? The available data do not support the concept of priorities for the products of photosynthesis, because increasing GPP increased all fluxes. All facets of carbon allocation are important to understanding carbon cycling in forest ecosystems. Terrestrial ecosystem models require information on partitioning, yet we found few studies that measured all components of the carbon budget to allow estimation of partitioning coefficients. Future studies that measure complete annual carbon budgets contribute the most to understanding carbon allocation.

Comments

This article is published as Litton, Creighton M., James W. Raich, and Michael G. Ryan. "Carbon allocation in forest ecosystems." Global Change Biology 13, no. 10 (2007): 2089-2109. doi: 10.1111/j.1365-2486.2007.01420.x. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections